<<234567>>
21.

If a,b,c be positive integers such that b/a is an integer. If a,b,c are  in geometric  progression and the arithmetic mean of a,b,c is b+2, then the value of   $\frac{a^{b}+a-14}{a+1}$  is 


A) 5

B) 4

C) 3

D) 2



22.

Let a,b and c be three  non-coplanar unit vectors such that  the  angle betwwen every  pair of them is   $\pi$ /3, if a x b +b x c  =pa+qb+rc, where p,q, r are scalars , then  the value of   $\frac{p^{2}+2q^{2}+r^{2}}{q^{2}}$ is


A) 5

B) 4

C) 3

D) 2



23.

The value of   $\int_{0}^{1}4x^{3} \left\{\frac{d^{2}}{dx^{2}}(1-x^{2})^{5}\right\} dx $  is


A) 2

B) 3

C) 4

D) 1



24.

Let   $n_{1}$<$n_{2}$ <$n_{3}$<$n_{4}$  < $n_{5}$  be positive integers such that $n_{1}$+$n_{2}$+$n_{3}$+$n_{4}$+$n_{5}$=20. The numbers of such  distinct arrangements ( $n_{1}$,$n_{2}$,$n_{3}$,$n_{4}$,$n_{5}$)    is 


A) 5

B) 6

C) 4

D) 7



25.

For a point P in the plane, let d1(P)   and d2(P)  be the distances of the point P from the lines x-y=0 and x+y=0, respectively. The area of the region R consisting of all points P lying  in the first quadrant  of the plane and satisfying   $2\leq d_{1}(P)+d_{2}(P)\leq 4.$   is   


A) 4

B) 5

C) 6

D) 2



<<234567>>